

Innovation • Collaboration • Inspiration

Thinking Together to Inspire

Project Goal and Objectives

- Evaluate the Feasibility of Using the HLC for Stormwater Treatment and Runoff Reduction:
 - Identification and quantification of watersheds which currently do or could flow into the HLC.
 - Determination of the HLC's capacity to accommodate runoff for water quality treatment.
 - Determination of infrastructure needed to convey, treat, and discharge stormwater flows from the HLC.
 - Estimation of annual volume of stormwater available for infiltration in the HLC.
 - Identification of measures needed mitigate health and safety concerns associated with stormwater treatment.

Project Goal and Objectives

- Evaluate the Feasibility of Using the HLC for Stormwater Treatment and Runoff Reduction:
 - Quantification of anticipated benefits of water quality treatment, preservation of trees, and enhancement of the recreational experience.
 - Estimation of capital improvement and operation and maintenance costs.
 - > Evaluation of framework for operating within the Colorado water rights administration system.
 - Conceptual design of a pilot project to further confirm the project feasibility.
 - Identification of future steps for project implementation.

>>> Project Participation

Participants

- Engineering and Parks/Recreation/Open Space staff from the following entities:
 - Arapahoe County
 - Douglas County
 - City and County of Denver
 - City of Aurora
 - City of Greenwood Village
 - City of Littleton
 - City of Cherry Hills Village
 - Southeast Metro Stormwater Authority
 - Denver Water
 - Urban Drainage and Flood Control District

Information Management

- A GIS base map was prepared which includes the following information:
 - HLC stationing
 - Storm sewer systems crossing the canal
 - Stormwater inflow points into the canal
 - Potential stormwater outflow points out of the canal
 - Denver Water HLC headgates
 - Tributary Watersheds
 - Jurisdictional Boundaries
 - Canal Segments
 - Data exported into Google Earth for review and comment by project stakeholders

> Information Management

>>> Information Management

Watersheds Considered in Study

- Watersheds which currently drain into or could drain into the HLC were evaluated based upon the following:
 - Area of watersheds available to drain into the HCL are limited based upon:
 - Capacity of HLC
 - Physical ability to drain into the HLC
 - Flow from storm sewer systems and streets
 - Diversions from natural channels are not feasible without obtaining a diversion water right and augmentation
 - About 240 watersheds were selected for consideration to drain to the HLC for a total of about 26 square miles.

Water Quality BMP Design Criteria

- BMP Design Criteria
 - Maximize available canal volume
 - Maximum ponding depth of 3 feet
 - 72 Hour drain time
 - Maximum allowed by the State Engineer
 - Used UD&FCD Updated Water Quality Capture Volume (WQCV) equation to determine optimum stormwater capture volume
 - Must have defined outflow location
- Based upon these criteria the canal was divided into 52 reaches.

Watersheds Considered in Study

Canal Segmenting Efficiencies

- Segmented Design Concept
 - More volume and infiltration than one control structure per reach

- Limitations
 - Inflow points required in upper segment
 - Added cost for additional structure
 - Additional maintenance access require

Canal Segmenting Example

Precipitation

- Average annual precipitation about 15 to 16 inches
 Ranges from 10 to 20 inches
- Precipitation occurs in an average of 40 to 50 storm events per year.
- BMP design proposed to capture about 85% of these storm events
- Runoff from these events generates an average of about 5 to 6 inches of potentially captureable runoff per year.
- This represents about 4000 acre-feet of runoff per year from the 26 square mile tributary watersheds

- Canal Capacity
 - Available BMP storage capacity in the HLC is about 313 acre-feet.
 - Needed water quality storage capacity is about 287 acre-feet.
 - However, effective BMP storage available is about 202 acre-feet (70% of available). This is due to:
 - Available capacity where capacity is not needed.
 - Excess runoff where capacity is not available.
 - This results in an average of about 2900 acrefeet per year of water temporarily stored by the BMP.

- Effectiveness for providing additional soil moisture/water for trees and vegetation:
 - 72 hour drain time provides about 100 additional days that the canal bottom will be wet after storm events.
 - Canal infiltration estimated to average about 20 acre-feet per event or about 1000 acre-feet per year.
 - Infiltration is variable throughout the canal length.
 - Remaining stored volume of about 1900 acrefeet per year is returned to the stream system.

Typical Control/Outlet Structure

Critical Issues

- Provide trash and debris control at inflow points into the canal.
- Provide access to control structures for maintenance and repair.
- Address aesthetic and health and safety issues.
- Maintain stormwater conveyance capacity for larger storm events that enter uncontrolled into the canal.
- Address potential water right impacts, if any.
- Others as may come to light from the pilot conceptual design.

Pilot Study

- The purpose of the Pilot Study is to obtain a proof of concept and obtain a better estimate of project costs and constraints to implementation.
- Reaches were selected downstream of Fairmont Cemetery since canal irrigation water no longer flows downstream of this point.
- Two canal reaches were selected; one in the City and County of Denver and one in the City of Aurora.

Pilot Study Reaches

Pilot Reach 38 in City and County of Denver

Pilot Study Reaches

Pilot Reach 40 in City of Aurora

Pilot Study Results

- For Reach 38, significant storm sewer system extensions are needed to divert required stormwater into the canal.
- Total capital costs for Reach 38 are estimated to be about \$2,300,000.
- One of the most expensive reaches in the entire study due to the large upstream watershed area resulting in large and deep existing storm sewers.
- For Reach 40, significantly less cost (about \$1,200,000) needed to implement plan.
- Costs for remaining reaches were prorated based upon Reach 38 costs, watershed slope, and design inflow rates.

Overall Project Costs

- Minimal Costs to Provide Segmentation Berms and Release Structures (About \$190,000/Reach).
- Significant Capital Improvement Costs to Divert Additional Runoff Into the Canal (Average of \$700,000/Reach).
- Total Estimated Cost for Capital Improvements for all 52 Reaches is about \$44,000,000.
- Total Estimated Cost for Operation and Maintenance of all 52 Reaches is about \$1,200,000.
- Estimated Cost of Water Rights and Augmentation Plan, if needed, is about \$2,500,000.

Overall Project Costs

Costs Summary by Jurisdiction

Jurisdiction	Total Capital Cost - Control and Outfall Structures	Total Capital Cost - WQ Outfall Systems	Grand Total Capital Cost	Total Annual O&M Cost
Douglas County	\$2,104,500	\$6,352,305	\$8,456,805	\$259,036
Littleton	\$850,500	\$4,025,085	\$4,875,585	\$125,385
SEMSWA	\$1,323,000	\$3,784,162	\$5,107,162	\$169,466
Greenwood Village	\$661,500	\$602,242	\$1,263,742	\$68,690
Cherry Hills Village	\$472,500	\$676,026	\$1,148,526	\$51,502
Denver	\$1,701,000	\$8,095,166	\$9,796,166	\$226,257
Aurora	\$2,268,000	\$10,610,781	\$12,878,781	\$262,177
Totals	\$9,381,000	\$34,145,768	\$43,526,768	\$1,162,513

Overall Project Benefits

- If water quality treatment needed for this same tributary watershed without this project, the estimated costs for comparable facilities is \$75,000,000. Not required at this time but would be if end of pipe water quality standards are promulgated in the future.
- Provides for trash and debris control.
- Helps maintain the natural environment associated with the canal recreational experience by providing water for growth of vegetation.
- Actual value to the recreational experience is unknown.
- Provides possible location for water quality treatment for linear roadway projects.

Study Results

- Technically Feasible to Use Canal for Water Quality Treatment / Runoff Reduction.
- Provides Significant Reduction of Stormwater Pollutants which Currently Reach Receiving Stream Systems.
- Reduces Stormwater Runoff Rates by an Aggregate Rate of up to 3300 cfs.
- May Provide up to 1000 A.F. per year of Additional Water to Canal Vegetation resulting in one-for-one Stormwater Runoff Volume Reduction.

Next Steps

- Input needed from Stakeholder Agencies as to Desire to Take Next Steps
- Investigate Governance Options / Issues
- Address Outstanding Legal Issues
 - Issues/Risks in Transfer of Ownership of **Easements Underlying the Canal**
 - Issues/Risks for Water Rights Requirements
 - Issues /Risks of Canal Ownership
- Evaluate a Cost Allocation between Stormwater and Recreation
- **Evaluate Additional Pilot Reaches to Further Refine** Costs
- Prepare Implementation and Phasing Plan
- Integrate with Other Canal Studies

Project Progress to Date

QUESTIONS?

